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We have analysed optical microscopy observations of focal conic domains (FCDs) with imperfect ellipses on the
basis of the theoretical concepts developed by Kleman et al. (Philos. Mag. 2006, 86, 4439). Two types of imperfect
ellipses are observed: with kinks (elementary imperfections resulting from a topological interaction of a
disclination with a dislocation, at their point of junction) being either in the ellipse plane (‘mouse’) or
perpendicular to it (‘turtle’). The experimental conditions for the observation of imperfect FCDs of both types
are described. A model describing the shape of a mouse-type ellipse is compared with observations. Two
experimental observations in nematogenic smectics (i.e. which have a smectic R nematic transition) emphasise the
predominant role of kinks in dynamical phenomena involving dislocations and FCDs: (i) a reversible and sudden
temperature-induced transformation between two FCD textures, i.e. FCDs with fewer kink-carrying distortions
(called isometric textures) and the higher temperature FCDs with a proliferation of kinks (called non-isometric);
(ii) a shrinking of the ellipses upon heating, up to their sudden and total disappearance at a temperature well
below the phase transition. In contrast, in a non-nematogenic smectic, the ellipse size does not vary upon heating
until the appearance of the isotropic phase.

Keywords: Smetic A; defects; imperfect focal conic domains; dislocations

1. Introduction

Topological line defects are well known in crystalline

solids; the standard example is quantised dislo-

cations (1), which break translational symmetries.

Quantised dislocations are also present in liquid

crystals (LCs) with quantised translation symme-

tries, for example, in layered media such as smectic

phases (2, 3), the defects of which are described in

this paper.

As in all liquid crystalline phases, smectics also

display another type of topological line defect,

disclinations (4, 5), which break rotational symme-

tries. Disclinations in layered media have specific

properties. Whereas disclinations in LCs with con-

tinuous translation symmetries (e.g. nematics) can

take any shape, they are well geometrically defined in

smectic A (SmA) phases, where they most often

appear as paired conics, namely an ellipse and a

hyperbola in a conjugate relationship, which delimit a

focal conic domain (FCD) inside which the layers are

parallel. The ellipse and the hyperbola are focal lines

of this set of layers, see (5, 6) for details. This special

disclination geometry is related to the fact that the

curvature deformations of the layers are much less

costly than strain deformations. This also means that

plastic deformations tend to relax with as few

dislocations as possible.

The presence of dislocations in interaction

with disclinations is of course unavoidable in a

plastically deformed medium; the interaction

between a disclination conic and a dislocation

shows up specific features when they are in contact,

which results in a local distortion of the conic away

from its ideal elliptic or hyperbolic shape, at the

location where the two defects meet. Such local

distortions are called kinks. They have been recently

reported in smectic phases (SmA) of various LC

materials (7, 8). The empirical observations enable

us to distinguish between those kinks that are

observable with light microscopy (macroscopic

kinks) and those that are not (microscopic kinks).

An isolated microscopic kink implies the interaction

of a microscopic Burgers vector dislocation with the

disclination; a density of microscopic kinks affects

the shape of the disclination with which the

dislocations interact (what we loosely call an

imperfect conic, in contrast with an ideal conic); a

macroscopic kink is the result of the interaction of a

macroscopic Burgers vector dislocation with a

disclination, or of the accumulation at neighbouring

locations on a disclination of microscopic Burgers

vector dislocations of the same sign.

In the remainder of this introduction we recall the

essential topological properties of a kink.
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The concept of kink is very general; it is valid for

all dislocation–disclination interactions, in smectics

as well as in nematics and other media where the

concepts of dislocation and disclination make sense

altogether, when defects are merging (9, 10). The
principle of the interaction is sketched in Figure 1

and can be summarised as follows.

Consider a disclination line made of two half

infinite wedge segments, A9A, BB9 linked by a

segment AB of twist character, a kink on the

disclination A9B9, Figure 1 (a). We recall that a wedge

disclination line segment is a line segment parallel

to the rotation vector, here denoted by V
!

; a twist

disclination line segment is perpendicular to the

rotation vector V
!

. This geometry is equivalent to

the geometry of Figure 1 (b), where the segment BB9

has been ‘smoothly’ transported to the position BB0

and its orientation reversed, so that it can now be

considered as carrying the rotation vector {V
!

. The
segments A9A and BB0 are wedge disclination

segments of opposite rotations and thereby carry

together a translation

~bb~V
!

|AB
�!

: ð1Þ

Together, they are therefore equivalent to a disloca-

tion of Burgers vector b
!

. Thus, because of the law of

conservation of the Burgers vector, a dislocation of

Burgers vector b
!

is attached to AB in Figure 1 (b).

Transporting back BB0 to BB9, it appears that a

dislocation with the same Burgers vector b
!

is

attached to the kink AB in Figure 1 (a). The

Burgers vector b
!

has to be a translational symmetry

of the medium under consideration, i.e. in a smectic

a multiple of the layer thickness d0. However, the

reasoning applies to any medium, for example, the

nematic liquid crystalline phase, where translational

symmetries are not quantised: in that case the curved

continuous shape of a disclination can be analysed in

terms of densities of continuous dislocations, and the

flexibility and the mobility of disclinations in

nematics can be analysed in processes of annihilation

and creation of such dislocation densities.

We have already made a distinction between

macroscopic and microscopic kinks. Another useful

distinction directly related to the present paper is

between two types of kinks, namely kinks in the

ellipse plane (first type) and kinks perpendicular to

the ellipse plane (second type). According to equa-

tion (1), the Burgers vectors of the attached disloca-

tions are either perpendicular to a direction belonging

to the plane of the ellipse or of the hyperbola (first

type), or parallel to the plane of the ellipse or of the

hyperbola (second type). In either case, the Burgers

vectors, which are along the translation symmetry

directions, have to be either perpendicular to the

smectic layers, if the broken translations are quan-

tised (b5nd0), or parallel to the layers, if the broken

translations are continuous. Here we are only

interested in quantised dislocations (see (10) for a

discussion of continuous dislocations in smectics).

According to this analysis, the orientation of the

layers with respect to the plane of the conic is thereby

an important element in classifying the types of

dislocations attached to a kink.

Layers inside a FCD are perpendicular to the

plane of the ellipse in its vicinity; therefore disloca-

tions in this region are preferentially attached to

kinks of the second type on the ellipse. Likewise,

dislocations outside the FCD are preferentially

attached to parallel kinks of the first type. Similar

remarks can be made, mutatis mutandis, for hyper-

bolae. In fact, all of the observations reported in

the following are regarding imperfect ellipses. We

have not made a comparable systematic study

of kinks on hyperbolae; see (11) for one relevant

observation.

It is important to observe that the foregoing

considerations do not appeal at all to the principles

of the topological theory of defects, but to the

more ancient Volterra process, suitably extended.

We refer the reader to (10) for a full discussion of

this topic.

Figure 1. Distorted wedge disclination line A9B9 of a
rotation vector V

!
: (a) attachment of a dislocation (shown

by a thin wavy line) of Burgers vector b
!

to the disclination
results in the presence of a kink AB connecting two half
infinite segments, AA9 and BB9 of the disclination; (b) the
segment BB9 transformed into the segment BB0 carrying the
opposite rotation vector {V

!
, by continuous transport.
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2. Experimental results

2.1. Materials, sample preparations

The smectic materials studied in this paper belong to

the cyano- and cyano-oxy-biphenyl series; they were

purchased from Merck. 8CB, 8OCB and 9CB exhibit

a nematic phase above the SmA phase (nematogenic

materials), whereas 10CB transits directly from the

SmA phase into the isotropic phase (non-nematogenic

material). The temperature control is performed

using a Hot Stage HS-2 from Instec which provides

a thermo-stabilisation accuracy of ¡0.002uC and a

temperature change at a controlled rate, which can be

as low as 0.001uC min21.

Reviewing the literature on FCDs in smectics we

find that in most papers the FCDs are studied as they

appear per chance in a sample. An FCD texture

appears spontaneously either after melting from the

crystalline state or on cooling from a higher

temperature phase in a sample between two untreated

glass substrates (6, 12–14). Although it is not difficult

to obtain the FCD texture, the preparation of a FCD

with desired predicted geometrical characteristics is

not an easy task. Moreover, in practice it appears

difficult to pick up a FCD satisfying the experimental

requirements (desired and controllable eccentricity,

size and orientation of the ellipse and hyperbola)

from the real FCD texture. In real samples the

examination of the FCD belonging to a texture is

complicated by other accompanying defects: other

FCDs, curvature walls, clusters of dislocations

including those with giant Burgers vector and other

smectic distortions. In the following sections we

consider three different experimental geometries for

the preparation of the FCDs, namely: (i) free-

standing films, (ii) hybrid aligned films with special

types of anchoring conditions, (iii) films between

untreated clean glass substrates, separated by spacers

of thickness 200 mm. These geometries induce differ-

ent types of FCD textures.

The first two methods of preparation, namely free-

standing films and films deposited on a solid substrate,

produce FCDs with ellipses that are roughly parallel to

the microscope view field. The third method of

preparation allows observation of the FCDs from the

side. A gentle heating of the solid material above the

crystal–SmA transition allows us to find many FCDs

located deeply in the bulk of the SmA sample with their

ellipses significantly tilted with respect to the micro-

scope field view. We call such FCDs lopsided.

Experimentally, we observes two types of imper-

fect ellipses (7, 8), which we call, in accordance with

the shapes they take, the mouse (in free-standing

films; a mouse carries a large density of kinks of the

first type), and the turtle (in hybrid films spread on a

substrate with quasi-planar anchoring and in thick

cells; a turtle carries a large density of kinks of the

second type). Kinks on a turtle are often macroscopic.

Imperfections of both types can also coexist on the

same ellipse. In the third type of samples, the lopsided

ellipses (and the FCDs they carry), which are seemingly

ideal, display a remarkable temperature evolution,

most conspicuously close to the nematic transition;

no doubt this evolution is related to dynamical kinks.

More generally, kinks should play a role in the size

transformations and mobility of ideal FCDs.

More details about the characteristics of the

various types of samples are given below.

2.2. Macroscopic kinks

Within this section we deal with hybrid aligned SmA

(8CB) films spread on glass substrates treated for

planar alignment of the director. The second film

interface is in contact with air where molecular

anchoring is homeotropic. Two types of glass substrate

have been used. The substrates of the first type have

been rubbed several times unidirectionally with a

Kimwipes napkin (from Kimberly-Clark) wetted in

glycerol (wet-glycerol rubbing) and the others have

been spin-coated with a polymer (PI 2555) layer

unidirectionally rubbed with velvet (dry rubbing).

The LC material is then spread over with a blade

along the rubbing direction. By rubbing a clean glass

substrate with a napkin wetted in glycerol, we expect

that the azimuthal anchoring strength will be weaker

than it is for the dry rubbing of the polymer layer. In

both cases we find FCDs. The difference is that for the

dry rubbing the kinked FCDs of equal size are tightly

packed in a quasi-hexagonal lattice (Figure 2), while

for the wet-glycerol rubbing we find a polygonal

texture containing very large turtle kinked FCDs. We

do not discuss the origin of these textural differences,

but retain the empirical conclusion that the wet-

glycerol rubbing is helpful for the preparation of the

turtle kinked FCDs. Hybrid director orientation

favours the appearance of the FCDs but the presence

of a particular direction of the easy axis at the solid

interface conflicts with the star-like geometry of the

director field within the FCD in the ellipse plane.

This leads to the formation of large Burgers vector

kinks on the ellipses, well observable under the optical

microscope.

2.2.1. SmA film on a wet-glycerol rubbed glass

substrate: turtle textures

Assume that we have first hybrid anchoring condi-

tions and zero pretilt at the substrate with planar

alignment (the pretilt angle is the angle between the
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director at the solid surface and this substrate); the

ellipse is usually located on this planar substrate.

The director then coincides with the easy axis only
along one direction of the full set of the star-like

directions of the director field. It is presumed that the

major axis of the ellipse is oriented along the easy

axis. For all other directions, the director deviates

from the easy axis direction with the maximal

deviation (of 90u) being along the direction passing

through the ellipse focus parallel to the minor axis.

For non-zero pretilt of the director, the conflict

between the star-like director field geometry within

the ellipse and the unidirectional anchoring condi-

tions is even more pronounced. For the ellipse

located in the substrate plane, there is no direction

along which the director can coincide with the easy

axis. Setting the ellipse at some distance below or

above the substrate (the distance depends on the

value of the pretilt angle), we can satisfy the pretilt

anchoring conditions along one of the radii emanat-

ing from the physical focus, whereas along the

opposite radius, the director tilt required by the

FCD geometry is parallel to the mirror image of

the easy axis with respect to the substrate.

This is illustrated in Figure 3 (a) and (b). Let M be

a point on the hyperbola; consider the cone CM of

Figure 2. Texture of the SmA film spread on the glass
substrate covered by rubbed polyimid PI-2555 with a free
second interface. (a) Demonstration of the textural change
coming from the right lower corner at T5T*. (b), (c) The
same elementary domain of the texture above and below
T*, respectively. Here T* is 0.6uC below the SmA–N
transition.

Figure 3. (a) At non-zero pretilt the director in the FCD is
not aligned with the easy axis. (b) The conflict between the
polar anchoring and the circular geometry of the director
field in the FCD can be softened by introducing a double
kink, perpendicular to the ellipse plane.

612 Yu. A. Nastishin et al.
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apex M that leans on the ellipse (see Figure 3 (a)). Its

generatrices are along the SmA molecular directions.

The director can coincide with the easy axis (at an

angle a in Figure 3) only on one side of the hyperbola

along one side of the major axis, and is very different

along the other side. The scheme in Figure 3 (b)

demonstrates that the conflict between the non-zero

director pretilt and the FCD construction can be

weakened if the two parts of the FCD on both sides

of the hyperbola are shifted with respect to each other

along the substrate normal. Such an operation results

in the presence of a double kink on the ellipse. The

left part of the ellipse becomes virtual, as it is below

the LC interface and the director appears parallel to

the easy axis all along the major axis of the ellipse. A

FCD of this type, namely a double kinked turtle, is

shown in Figure 4 (a). The two parts of the double

kinked ellipse are not at the same level: the kinks have

a measurable vertical component of the order of a

few micrometres. On the other hand there is a

horizontal component (the kinks are oblique with

respect to the ellipse plane) so that the two parts of

the double kinked ellipse cannot be fitted together.

We comment here only on the vertical component of

the kink. Figure 4 (b) shows a turtle with one of the

two kinks smoothly spread along the ellipse.

Figure 4 (c) shows a lopsided kinked FCD of the

turtle type observed in thick (200 mm) samples
between untreated glass substrates. The steps which

link the kinks on the ellipse to the hyperbola are most

remarkable. They must be understood as sets of screw

dislocations whose total Burgers vector b
!

obey

equation (1) on the ellipse and on the hyperbola.

In our observations shown in Figure 4 (a) the

details of the attachment of the steps to the hyperbola

are below the microscope resolution; we analyse the

situation as follows. Let us assume (this is a thought

experiment) that the hyperbola (which is a wedge

disclination of strength k51, i.e. it carries a 2p
rotation) is split into two independent wedge

Figure 4. Imperfect FCDs of the turtle type: (a) symmetrically double kinked, see the text for details; (b) asymmetrically
kinked, one of the two kinks is smoothly spread along the ellipse; (c) a lopsided kinked FCD of the turtle type observed in
thick samples between untreated glass substrates.
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disclinations H1/2 and H91/2 of the same hyperbolic

shape, of strength k51/2, i.e. each carrying a p rota-

tion. We also assume that each step originating on

a kink on the ellipse (AB
�!

or A0B0
��!

) is attached to a

kink on one of the hyperbolae (denoted by ab
�!

and

a0b0
��!

). We therefore have, according to equation (1),

~bb*~tt|AB
�!

~~tt| ab
�!

, ð2Þ

and a similar equation for A0B0
��!

and a0b0
��!

. Here ~tt
(respectively, ~tt) is the unit tangent vector to the

oriented ellipse (respectively, the hyperbola) at the

kink locations: the rotation vectors are indeed

tangent to the conics. In the sketch of Figure 4 (a),

it is assumed that along the ellipse we have the

sequence A, B, A9, B9, so that AB
�!

~{A0B0
��!

, and that

the two k51/2 hyperbolae are oriented parallel to one

another. By symmetry, ~tt is perpendicular to the

ellipse plane, so that we expect ab
�!

to be in the ellipse

plane, in a simple model; thus the step joining AB
�!

and ab
�!

should be twisted.

Now, the idealised sketch of Figure 4 (a) has to be

modified to take the real situation into account. The

essential difference comes from the fact that at

some distance from the kinks ab
�!

and a0b0
��!

, on each

side of the ellipse plane, the two k51/2 hyperbola

segments should merge into a unique k51 hyperbola

segment. In this operation, the kinks come near to

one another and tend to align (which is observed,

seemingly) implying they interact. In particular, we

no longer expect the step dislocations to be of

a screw character in the vicinity of the kinks.

However, our analysis is only a first approximation,

and has to be completed after more observations

have been made.

2.2.2. SmA film on a glass substrate covered with

rubbed PI-2555: a textural transformation

When deposited on a glass substrate and covered

with a unidirectionally mechanically buffed polymer

PI-2555, the investigated LC materials we have

studied show quasi-planar alignment of the director

with a pretilt angle of about 3u (see (15, 16)). The

sample is heated to the nematic phase and slowly

cooled down to the SmA phase. The texture of the

SmA after cooling displays a quasi-hexagonal pattern

of domains which, for similar geometry of the hybrid

SmA between two solid substrates, have been proven

elsewhere to be composed of fragmented FCDs

with smectic layers carrying a negative Gaussian

curvature (17).

The elementary units of the quasi-hexagonal

pattern suffer from a textural transformation at a

temperature T* approximately 0.6uC below the

smectic–nematic transition. The transformation is

evidenced in the upper photograph of Figure 2. The

right lower corner displays the appearance of a new

texture. The arrows in the lower photograph of

Figure 2 point to small FCDs that have appeared for

T,T*. In contrast, at T.T* the interstices between

the domains are free of any visible defects and, thus,

according to the model of Kleman and Lavrentovich

for a tilt grain boundary in a smectic (see Appendix A

for a short introduction and (18) for details) are

full of optically invisible elementary dislocations,

replaced below T* by the small FCDs just alluded to.

(These FCDs and elementary dislocation sets are

topologically equivalent in the sense that they yield

the same orientation of the director at a distance

from the plane of the ellipse (18). See (19) for

probably the first observation of this equivalence,

with FCD ellipses and dislocations located at the

substrate.) The middle and lower photographs in

Figure 2 show the textures of the same elementary

domain above and below T*, respectively. Our opinion

is that the texture in Figure 2 corresponding to T.T*

(middle photograph) represents a double kinked

FCD, presumably of the Mouse type, with the

in-plane kinks connecting arcs of two co-focal ellipses

with different diameters. This result follows from

the fact that the size of the ellipse fragment in the

right part of the FCD is much larger than in the left

part. The reason for such a construction could be

that the left part of the FCD, where the smectic layers

are strongly curved and hence strongly conflicting

with the unidirectional anchoring, is limited by the arc

belonging to an ellipse of smaller size, and the other

(right) part, where the layers are less curved, is limited

by the arc of the larger size ellipse. The observations

show that on cooling at T5T* the kinks shorten.

Shortening of the kink is in agreement with the decrease

of the total Burgers vector below T*, according to

equation (1).

The dynamics of the transformation displays

two characteristic features: it is abrupt and it is

reversible. We believe that it is governed by the

switching from a prenematic non-isometric elastic

regime above T* to the conventional isometric

smectic behaviour below T*. We use here the

qualifiers ‘isometric’ and ‘non-isometric’ in the sense

defined in (20) (see Appendix A). In the non-isometric

elastic regime the distortions of the smectic layers

relax mainly through the appearance of dislocations

and curvature walls, at the expense of the equi-

distance and parallelism of the layers, whereas in the

isometric regime there is rather a proliferation of

FCDs, such that the curved layers remain equidistant

and parallel in the largest possible volume of the
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sample, which also implies that the density of kinks is

minimised. It is reasonable to expect that the balance

between dislocations and kinks on one hand, and

FCDs on the other, depends on temperature, more

exactly on the variation with T of the physical

constants (see (7)). The instability which results from

this competition depends also on the boundary

conditions; in the present case, where the anchoring

is strong and opposes the formation of ideal FCDs at

the substrate, we expect that the transformation from

an isometric regime with numerous small FCDs to a

non-isometric regime with plenty of dislocations,

happens at a rather low temperature T*. The fact that

the instability temperature is so well defined might be

a result of the uniformity of the boundary conditions,

which are dominated by the strong anchoring

conditions.

The same characteristics of abruptness and

reversibility are also observed with the phenomenon

of disappearance of the ellipses, described later

in section 3.2, when the temperature increases; we

Figure 5. FCDs in thick free-standing films.

Figure 6. Best fits of the experimental ellipse (dots) belonging to a FCD (shown in the photograph above the plots, the scale
bar is 20 mm) in thick free-standing smectic film by the Mouse model (equation (13), solid line) and by the ideal ellipse
(equation (15), dashed line). As expected, the difference between the ideal ellipse and the mouse is small (,1 mm) and the ideal
ellipse appears outside both the experimental and theoretical imperfect ellipses.
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shall argue that they belong to the same type of

instability.

2.3. Microscopic kinks; the mouse

Deformed ellipses of the Mouse type (those with in-

plane kinks) are obtained in free-standing films. A

SmA drop is deposited and spread over a hole of a

metallic collar with an internal diameter of 5 mm and

thickness of 2 mm. After the relaxation of the smectic

film, we obtain an ordinary free standing SmA film,

which as a rule contains few smectic layers and which

looks black between crossed polarisers. Then an

additional drop of the same SmA is deposited at the

centre of the free-standing film. This deposition has

to be careful not to break the existing thin film. The

immediate microscope observations reveal that the

added material does not fall through the thin film.

Instead the film serves as a substrate for the added

material, which spreads towards the film periphery

producing terraces and rows of FCDs (Figure 5).

After several hours the film has a thickness profile

varying from a few micrometres at its centre to

several hundreds of micrometres at its periphery and

is stable in time.

These large FCDs (from tens to several hundreds

of micrometres in diameter) have never been docu-

mented before in free-standing films (except in our

recent paper (7)). There are multiple advantages of

this geometry. Although azimuthal anchoring condi-

tions of the molecules on two surfaces of the film

are homeotropic, hence azimuthally degenerate, the

orientation of the FCDs is not random. Orientation,

position and size of ellipses and hyperbolae are

predetermined by the wedge character of the film

periphery: (1) the ellipse planes are to be found

within the midplane of the film; (2) the hyperbolae

are pointed towards the direction of smaller film

thickness; (3) the eccentricity e of the ellipses is non-

zero and defined by the wedge angle v of the film

meniscus through the relation e5sin(v/2); (4) the

FCDs are arranged in circular rows such that the size

of their ellipses is roughly the same within a row and

increases in the direction towards the film periphery;

(5) owing to the curved profile of the meniscus

surface, the FCD ellipse is expected to be distorted,

first, because the wedge angle v of the film and

consequently the eccentricity of the ellipse and,

second, because the thickness of the film and con-

sequently the size of the ellipse have to be increasing

Figure 7. Temperature evolution of the FCDs size in 10CB in a broad temperature region; inset: near the transition to the
isotropic phase.
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functions of the distance from the centre of the film.

Owing to the specific shape of the ellipse, such a

distorted FCD is called a mouse. A theoretical

analysis of the mouse shape is developed in

Appendix B see also the schematic drawings in our

previous paper (7)). We have studied in detail several

mice in various samples: an illustration of the results

is given in Figure 6, which shows an experimentally

observed shape (shown in the inset), and for

comparison the shape predicted by the mouse model

(equations (12), (14) and (15)) and the shape of the

corresponding ideal ellipses (equations (17)–(19)). As

expected by the model, the ideal ellipse is outside the

imperfect, experimental ellipse, at a distance which is

in qualitative agreement with equation (21).

3. Size evolution of FCDs for nematogenic and non-

nematogenic materials

3.1. FCDs in a non-nematogenic smectic

In the 10CB non-nematogenic material, the vast

majority of FCDs do not suffer any visible change in

size until the frontier with the isotropic phase comes in
contact with the FCD. The measured temperature

dependence of the FCD size is plotted in Figure 7. The

photograph with a lopsided FCD in Figure 8 (a)

corresponds to a temperature well below the transition

temperature, while the two other photographs were

taken at the temperature when the isotropic phase

appears. Figure 8 (b) and (c) contain the interface

between the SmA and isotropic phase (shown by
an arrow). It is observed that the size of the FCD

does not decrease essentially approaching the phase

transition. When the interface touches the FCDs,

the ellipse shrinks (Figure 8 (c), corresponding to

T–Tc50) and disappears. As shown in the next

section, the situation is quite different for the

nematogenic SmA.

3.2. Temperature transformations of FCDs in thick
free-standing films of nematogenic smectics

3.2.1. Heating

The prenematic transformations of FCDs take place

in a broad temperature region. In the nematogenic

8CB, 8OCB and 9CB materials there is a clearly

visible pretransitional tendency to the disappearance

of the FCDs. The temperature distance from the

Figure 8. Observations of the temperature evolution of the
FCD size in 10CB taken: (a) at 7.24uC below the SmA–ISO
phase transition (upper photograph); (b), (c) at the
temperature when the isotropic phase (shown by arrows)
appears. The photographs correspond to the plot shown in
Figure 7.

Figure 9. Temperature evolution of the FCDs size in 8CB.
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phase transition, where a particular FCD disappears,

depends on its size: smaller FCDs disappear at

lower temperatures. Figures 9 and 10 show plots

displaying the temperature behaviour of the FCD

size (Figure 9 for 8CB and Figure 10 for 8OCB).

Some of the graphs contain abrupt steps, which

we think result from the textural transformations

between the isometric and non-isometric elastic

regimes evidenced in section 2.2.2. However, all

the plots for nematogenic materials display pre-

transitional shrinking of the ellipses, as is clearly

seen in the vicinity of the phase transition, enlarged

in the inset of Figure 10 (compare with the inset of

Figure 7, where no such vanishing tendency is

observed for a non-nematogenic SmA material).

The evolution of the ellipse size plotted in

Figures 9 and 10 has a negligible time-dependent

component. We checked this for the pretransition

region in the immediate vicinity of the point at

which later heating caused the ellipse to disappear.

For example, the temperature was stabilised for 25 min

at 0.005uC below the temperature at which the ellipse

disappeared on later heating, and the photographs

taken in the course of time during the temperature

stabilisation do not reveal any changes in the size,

while on further heating the ellipse disappears. We

have carefully checked the time stability of the ellipse

size in all of the measured temperature ranges,

stabilising at particular chosen temperatures and

measuring the size in the course of time. The ellipse

shrinks continuously when the temperature increases,

and ceases to change when the temperature is

stabilised, but only to some threshold size ac for the

longer ellipse diameter, after which the ellipse dis-

appears suddenly, even if the temperature does not

increase further or even if the temperature decreases.

This threshold size of the ellipse was roughly the same

for all examined ellipses in the studied nematogenic

SmA materials and is about ac<10 mm. The FCDs

with a diameter smaller than about 10 mm are not

stable and collapse. Continuous shrinking of the

ellipse is accompanied by an increase in the eccentricity

of the ellipse (see Figures 11 (a)–(d) and 12).

3.2.2. Temperature cycling

To check whether the pretransition changes of the

ellipse size are reversible, we have performed tem-

perature cycling. The temperature was stabilised for

about 10 min at point 1 in Figure 13 (cycle A), which

is close to the nematic transition. Then it was

gradually increased to point 2. Measurements of the

ellipse size (dots in the cycle A, Figure 13) at

temperatures between points 1 and 2 show that it

decreases on heating. Then the sample was cooled

back to the temperature corresponding to the point 3.

Measurements of the ellipse size (full squares), at

intermediate temperatures between points 2 and 3,

display an increase of ellipse size but the ellipse does

not recover its previous size even at the temperature

corresponding to point 3, which is significantly lower

than that for point 1. The temperature modifications

of the ellipse size in the cycles that follow are also

plotted in Figure 13.

At least three conclusions can be drawn from the

cycling procedure described above. First, on heating

approaching the nematic phase transition, the ellipse

size decreases, while on back cooling it increases.

Second, the temperature evolution of the ellipses is

reversible, but only partially: the ellipse size does not

recover but remains smaller when after the heating

the sample is cooled back to the starting temperature.

The partial reversibility of the temperature evolution

of the FCDs suggests that at a given stabilised

temperature there is equilibrium between the area

occupied by FCDs and by dislocations. When

the sample is heated, the area occupied by free

dislocations (those not attached to the ellipses)

increases at the expense of the decrease of the sizes

of the FCDs. On back cooling the FCDs expand at the

expense of the area occupied by free dislocations. The

Figure 10. Temperature evolution of the FCDs size in
8OCB in a broad temperature region; inset: near the
transition to the nematic phase. The corresponding
modifications of the FCDs are illustrated in Figure 11.
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expanding of the FCDs is most probably accompanied

by the attachment of some of the free dislocations to

the ellipse. It is plausible that due to limited mobility of

the dislocations, the expanding of the FCDs on

cooling is only partially reversible. In other words,

the partial reversibilizty of the temperature evolution

of the FCDs implies that the shrinking of the ellipse
on heating is energetically easier than its back

expanding on further cooling. Indeed the shrinking

of the ellipse is accompanied by the emission of the

dislocations by their separation from the ellipse, while

the reverse process of ellipse expanding requires the

attachment of the dislocations to the ellipse. However,

the dislocations are usually pinned by their ends on the

sample interfaces or on other defects. The latter will
hinder the expansion of the ellipse. Third, small

ellipses with a diameter smaller than 10 mm are

unstable: they collapse and disappear.

3.2.3. The nature of the textural transformation

The transformation described in this section is

certainly not a phase transition, since it depends on
the size of the ellipses; it is rather an instability

strongly dependent on the boundary conditions to

which the ellipse sizes indeed contribute. We believe

that this instability is the same as that related to the

textural transformation of section 2.2.2; it is also

related to the modifications of a tilt grain boundary.

However, the boundary conditions are completely

different; in the present case, the ellipses are hardly in
contact and their eccentricity, e5sin(v/2) is rather

large, which implies that in the description of Kleman

and Lavrentovich (18) (see Appendix A) the grain

boundary structure is close to a curvature wall. It is

difficult to decide whether the (large) interstitial

regions between the ellipses are still filled with

dislocations (as in section 2.2.2) or are already

Figure 11. (a)–(d) Microscope photographs illustrating the
temperature evolution of the FCDs in 8OCB. The notation
A–D corresponds to the dependencies shown in Figure 10.

Figure 12. Temperature variation e(DT) of the eccentricity
measured for the ellipse D (see Figure 11). Here e(DT)5(e0–
e(DT))/e0, DT5T–Tc is the distance from the nematic phase
transition, e0 is the eccentricity value measured far from the
nematic phase transition, e(DT) is the eccentricity value
measured at a given DT.
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curvature wall regions. However, there is no doubt

that a curvature wall is more non-isometric (in the

sense of section 2.2.2) than a tiling of the grain

boundary by ellipses and the FCDs they belong to.

The eccentricity of the ellipses increases with

temperature, which also indicates a transformation

towards curvature walls in the prenematic region.

This modification of the ellipse eccentricities

requires, of course, a modification of the kink

distribution, whose Burgers vector density measured

along the major axis is dbdisl52e dx (equation (7),

Appendix B); the total Burgers vector attached to an
ellipse is 4e a54c. The notion of kink, which has been

developed for the dislocation–disclination interac-

tion, is topological, and it does not matter whether

the objects attached to the ellipse are dislocations, or

whether a curvature wall extends between ellipses, to

use the language of dislocations. However, the local

distribution of strains at the attachment, or along the

topological object in movement in order to change
the equivalent total Burgers vector, depends on the

nature of the topological object, dislocation of

fragment of a curvature wall. However, this is a

question that we do not consider here.

4. Conclusion

We have documented polarisation microscopy tex-

tures of imperfect FCDs. In real samples the FCDs

can contain in-plane or out-of-plane kinks (FCDs of

the mouse or turtle type, respectively). The mouse

Figure 13. Temperature cycles of the FCD evolution. Cycle
A: the temperature was stabilised for about 10 min at point
1, increased to point 2 (dots) and then decreased to the
temperature corresponding to point 3 (solid squares). Cycle
B: the temperature increases and the ellipse size (upward
triangles) decreases between points 3 and 4. At point 4
the temperature was stabilised for a few minutes and then
again decreased to point 5 (downward triangles). Cycle C:
heating (rhombuses) from point 5 to point 6, where the
ellipse disappears. For comparison, the branch ‘4R5’
(downward triangles) of the previous cycle B is also shown
in cycle C.

Figure 14. Schematic presentation of the profile of the free-
standing film containing a FCD in its midplane with the
notation used in Appendix B: r is the curvature radius of
the film meniscus; g is the x-coordinate of the centre of the
film; F is the origin of the coordinate system located in the
focus of the ellipse; the ellipse is in the XY-plane; v is
the misorientation angle of a grain boundary located in the
midplane of the film; the eccentricity of the ellipse is
e5sinv/25(x–g)/r; x0 and x1 are x-coordinates of the two
opposite extremities of the ellipse on the X-axis.
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shape has been fitted by proposed theoretical

equations, which are in good agreement with the

experimental observations.

Two types of smectics, namely nematogenic and

non-nematogenic have shown very different tempera-

ture evolution of the FCD size. For nematogenic

smectics the FCDs decrease in size and then
disappear while still in the smectic phase on heating

in the region at some distance from the temperature

of the nematic phase transition. Temperature cycling

displays partial reversibility of the FCD size. When

on heating a FCD becomes smaller than about 10 mm

in diameter, it collapses, vanishing even if the

temperature is stabilised or decreased. For the non-

nematogenic smectics, the FCDs do not change their
size until the interface with the isotropic phase

touches the FCD. In the nematogenic smectic films

deposited on unidirectionally rubbed substrate we

have observed a reversible sudden temperature

induced transformation of the FCD texture.

We believe that the observed temperature

transformations of the FCDs are due to variations

of the material constants, which are large enough to
cause isometric to non-isometric instabilities. In the

so-called isometric regime (at lower temperatures),

the parallelism of a vast majority of the layers (but

not all, see Appendix A), characteristic of a smectic

phase in its ground state, is conserved; in the non-

isometric regime (closer to the nematic phase) the

constraint of parallelism is somewhat relaxed and

dislocations or curvature walls are numerous. The
transition between the two regimes is controlled by

kinks. The extent of the ‘prenematic’ region, where

non-isometry is predominant, depends on boundary

conditions; this region is high in temperature. A

careful investigation of the magnitude of the

material constants in this region could be of

interest.
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Appendix A. Isometric and non-isometric deformations

We define isometric deformations as those that

conserve the parallelism and the distances (between

layers in smectic phases and between columns in

columnar phases); they are commonplace in LCs.

Isometric deformed textures display specific geo-

metric features; also the order parameter singularities
which respect to isometry can extend over large,

macroscopic, distances, for example, cofocal conics in

smectics, developable domains in columnar phases

(4–6). The observation of defects and textures in

the recently discovered liquid crystalline phases of

bent-core molecules (banana shaped) has con-

siderably enlarged the scope of possible isometric

distortions, because some of these phases show simul-
taneously smectic, columnar ordering and macro-

scopic chirality (20).

Isometric domains do not tile space, so there are

always non-isometric defects (such as dislocations or

curvature walls) remaining in the interstices left
between domains in contact. The question is, there-

fore, what is the typical size of the interstices or, in

other words, what is the size of the smallest possible

isometric domains. In SmAs this discriminating

length is l~
ffiffiffiffiffiffiffiffiffiffi

K=B
p

, where K and B are elastic

moduli for the curvature and strain deformations,

respectively. Bidaux et al. (21) have indeed shown

Liquid Crystals 621

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



that in a set of toric FCDs, with all of the disclination

circles belonging to the same plane where they form

an Apollonian tiling, the smallest circle diameters

scale as l.

The Apollonian tiling is a very peculiar FCD

tiling; it constructs a grain boundary between two

smectic grains that have the same orientation, the

misorientation v50. Most often, FCDs form tilt

grain boundaries when packing; all of the ellipses

belong to the grain boundary, have the same

eccentricity e5sinv/2 and are in contact in this

boundary. The angle v measures the misorientation

between layers perpendicular to the common asymp-

totic directions of the cofocal hyperbolas. The size

and the nature of the interstices depends on l, as

already indicated, but also on v (see (18)). For a very

large v.p, the layers curve smoothly from one

direction to the other, the grain boundary is a

curvature wall; thus, when approaching v5p, the

interstices tend to become macroscopic. For a small

v.0, the grain boundary is accommodated by a set

of parallel edge dislocations, in the manner of a

classical tilt boundary; thus, when approaching v50,

the interstices also tend to become macroscopic. We

speak of a non-isometric regime when such macro-

scopic regions, curvature walls or classical tilt

boundaries appear. For all other misorientations, in

fact for most of the interval 0,v,p, the grain

boundary is made of FCD ellipses, with dislocations

between the ellipses, extending from one ellipse to

the next in small interstices. This is the isometric

regime.

Appendix B. The mouse

B.1. The imperfect ellipse

Let us consider a FCD with the ellipse located in the

middle plane of the symmetrical free standing SmA

film (Figure 14).

The equation of an ideal ellipse in polar coordi-

nates (r, w) is

r~
p

1{e cos w
ð3Þ

where p5b2/a and e denote the parameter and the

eccentricity of the ellipse, respectively; a is the semi-

major axis and b is the semi-minor axis. The origin of

the coordinates is taken at the left focus of the ellipse,

which is the physical focus, located closer to the

centre of the film than the other focus. The x-axis is

chosen directed towards the film periphery. The size

of the ellipse depends on the thickness of the film, but

we shall not consider this question here.

Because of the curved meniscus of the film profile,

the thickness d and the wedge angle v of the film are

functions of the x-coordinate and, thus, p(x) and e(x)

are also functions of the x-coordinate (or the angle w).

Hence,

r~
p wð Þ

1{e wð Þcos w
: ð4Þ

Such deformed ellipses are called mice (see (7)). The

smectic layers are no longer strictly parallel, but we

make the reasonable assumption that they intersect

the plane of the ellipse, inside it, along concentric

circles centred at the focus of the ellipse; they remain

parallel in this region. Calculating the differential of

equation (2), we obtain

dr

r
~

dp

p
z

cos w de

1{e cos w
{

e sin w dw

1{e cos w
: ð5Þ

For an ideal ellipse:

dr~e dx: ð6Þ

As shown in (7), the curved ellipse disclination, which

is not a wedge disclination, has to carry a density of

kinks at the layer scale, even in the ideal state. A

density of dislocations is attached to those kinks, the

Burgers vectors of which are perpendicular to the

plane of the ellipse and can be written as

dbdisl~2e dx, ð7Þ

in agreement with Figure 1. In fact, this density is

made of quantised dislocations of Burgers vectors

multiples of 2d0, d0 being the layer repeat distance;

each kink carries a Burgers vector dbdisl52d0.

Indeed, according to equations (6) and (7), we have

dbdisl52dr; since the layers are falling perpendicular

to the plane of the ellipse. With dr5d0, this yields

dbdisl52d0.

Making the hypothesis (which is exact without

approximation in the case of an ideal ellipse (6)) that

dr&e dx ð8Þ

one can rewrite equation (8) in the form

dr~
{p e sin wð Þ
1{e cos wð Þ2

dw: ð9Þ

Equations (6) and (7) turn equation (5) into

dp

de
zx~0: ð10Þ
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The integration of equation (10) leads to

p~p0{

ðx

x0

x
de

dx
dx, ð11Þ

where p(w50)5p(x0)5p0 and p(w5p)5p(x1)5p1. The

coordinates of the two apices M0, w50 and M1, w5p
of the ellipse x0 and x1 are given by

x0~x w~0ð Þ~rw~0~
p0

1{e0
> 0 and

x1~x w~pð Þ~{rw~p~{
p1

1ze1
< 0:

Figure 14 represents the shape of the profile (see (22)

for a comparable situation). Owing to the presence of

terraces, the ellipses are deformed and appear to be

more similar than mice; the semi-major axis is

denoted by a, v is the grain boundary angle, d is

the sample thickness and g denotes the negative

origin of the film.

We choose a simple profile of the meniscus

obeying (23):

e~
x{g

r
, ð12Þ

where r is the curvature radius of the freely

suspended film (see Figure 14).

In polar coordinates, x5r cos w5(p cos w)/(1–

e cos w), which can be rewritten as

w~arccos
x

pze x
: ð13Þ

Therefore, one has

y~r sin w~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2{1ð Þx2z2e pxzp2

q

: ð14Þ

Keeping in mind the expression of the eccentricity

equation (12), the expression of the parameter p(w)

reads as follows:

p~p0{
1

2r
x2{x2

0

� �

: ð15Þ

B.2. The ideal ellipse versus the imperfect ellipse

Let a*, b*, c*, e*5c*/a*, p*5b*2/a* denote the

geometrical parameters relating to an ideal ellipse

r*5p*/(1–e* cos w*), which we wish to compare with

the imperfect ellipse above. We define such an ideal

ellipse as the ellipse with the same apices as the

imperfect ellipse, namely x0, x1, and the same focus at

x50. Hence, the same polar coordinates at the same

origin. In these definitions the choice of the focus has

a clear physical content: whichever FCD is built from

this ideal ellipse, the smectic layers intersect the plane

of the ellipse along the same circles centred at this

focus; this was in fact also the central geometrical
property of our construction of the imperfect ellipse.

We then have

x0~
p�

1{e�
~

p0

1{e0
, {x1~

p�

1ze�
~

p1

1ze1
, ð16Þ

from which relations we obtain

e�~
x0zx1

x0{x1
, p�~

{2x0x1

x0{x1
: ð17Þ

It suffices to compare the ordinates of the imperfect

ellipse and of the ideal ellipse for the value of x50, in

order to have some feeling how the experimental

‘ellipse’ differs from an ideal ellipse. We have

y� 0ð Þ~p�, y 0ð Þ~p0z
1

2r
x2

0:p1z
1

2r
x2

1: ð18Þ

We can express these quantities as a function
of half the major axis a~a�~ 1

2
x0{x1ð Þ and of

the abscissa of the centre of the ellipses

xC~x�C~
1

2
x0zx1ð Þ~c�. We obtain

p�~
b�2

a
, p x~0ð Þ~ 1

2
p0z

1

2r
x2

0zp1z
1

2r
x2

1

� �

~az
g

r
c�{

1

2r
a2zc�2
� �

,

ð19Þ

i.e.

d~y x~0ð Þ{y� x~0ð Þ

~
g

r
c�{

a2

2r
zc�2

1

a
{

1

2r

� �

:
ð20Þ

The first two terms are negative and the third

term is positive. The difficulty of the sign of d may be

solved by noticing that since

p0z
1

2r
x2

0~p1z
1

2r
x2

1,

we also have

c�
1

a
{

1

r

� �

~{
g

r
,

hence, after some algebra:

d~{
b�2

2r
v0: ð21Þ
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Substituting typical values for the ellipse half-

diameter b*525 mm and for the curvature radius

r5103 mm, we find that the deviation of the deformed

ellipse from the ideal ellipse is expected to be quite

small |d|,0.3 mm. Of course, the larger the radius of

curvature, the smaller the quantity |d|. Such a small

value cannot be measured with an optical micro-
scope. However, according to equation (20), d is

negative indicating that the ideal ellipse is expected

to be outside the imperfect ellipse and, hence, the

mouse model can be qualitatively tested by fitting the

experimental shape of a FCD ellipse by equa-

tions (13) and (15) for the ideal ellipse (dashed line

in Figure 6) and mouse (solid line), respectively, and

comparing their positions with respect to each other

and with respect to the experimental ellipse (dots).
This expectation of the model has been observed for

three ellipses belonging to two different samples.
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